Aquaveo & Water Resources Engineering News

Exporting Using the View Values Command

In your groundwater model in GMS, do you need to export only a specific dataset value? GMS provides a way for you to export different dataset values and save them as text files that you can continue to edit outside of GMS. This post will cover exporting values using the View Values command.

To export data using the View Values command, select a dataset in the Project Explorer then right-click and select the View Values command. This will open the Edit Dataset Values dialog. This dialog shows an array of data values for the selected dataset. From the Edit Dataset Values dialog, you can export the data values in a couple ways.

Example of the Edit Dataset Values dialog

The first option is to click the Export button in the dialog. This will open the Dataset Filename dialog. Here you can give the exported file a name and save out the data as a tabular text formatted file. This exported file can be opened with a text editor or spreadsheet program. All values in the dataset will be exported with this value.

The second option is to select the data in the data array, then copy (Ctrl+C) and paste (Ctrl+V) the values into another document such as Excel or Google Docs. This method gives you the option to be selective about which data values to include. This method also allows you to save out the data in other file formats.

It is important to note that if you change the formatting in the text file, in excel, or google sheets and try to import the file back into GMS it may not import correctly. The format used in the Edit Dataset Values dialog is the format that GMS will be expecting when importing the data back into the project.

Try out exporting dataset values using the View Values command in GMS today!

Blog tags: 

Tips for Watershed Delineation

Having a well delineated watershed basin can make a difference in your watershed model. WMS contains a method to automatically delineate a watershed for your projects. This tool can quickly create a delineated basin so you can move on with your watershed projects. This post will cover the different tips on how to help you successfully delineate a watershed basin in WMS.

Try switching between TOPAZ and TauDEM
Example of the Watershed Delineation Wizard in WMS

If using either TOPAZ or TauDEM fails to give you a valid watershed basin, try using the other. Switching between TOPAZ and TauDEM can help with delineating your watershed, however, it does depend on what you need for preprocessing. It is important to remember that TauDem can only work for pulling out streams, it does not work for ridges. This is why in most cases it is better to use TOPAZ. These tools both can take a while to run so it is best to get this process done as soon as possible.

Check the resolution of your DEM

If the resolution is too low on your DEM then it is unlikely that it will properly generate the data files. You can fix this by choosing a DEM that has a higher resolution. However, it is important to note that if the resolution is too high it may take too long for the data files to load and for the delineation process to finish. It is best to find a happy medium between the two so the data files will load, the delineation will go quickly, and the resolution will still hold up.

Adjust your outlet location

In order to delineate a watershed, you will need a place for all the water to end up flowing to. A misplaced outlet point can cause issues with the delineation process. Adjusting the location of the outlet point can improve the final basin results.

Try out delineating watershed basins on your project in WMS 11.1 today!

Blog tags: 

Tips for Organizing the Project Explorer in SMS

SMS has many kinds of datasets, geometries, and simulations that could be added to your Project Explorer. These are useful features with essential roles in building a valuable project in SMS. But sometimes the Project Explorer gets very full and becomes difficult to navigate. This is when it can be useful to organize the Project Explorer to make things easier for you and those you work with. Today, we have some tips on how you might keep things organized so you can accomplish what you need to.

Example of Project Explorer Organization in SMS
  1. You might find it useful to name each new project element with a name that helps describe it. Descriptive names can help you find your project elements more quickly when you need to tweak something here or there. For example, you might have a materials coverage where the default Manning’s n is 0.015 and another one where you’ve changed it to 0.045. Labeling the materials coverage “n-0.015” and “n-0.045” could help you remember the difference between the coverages.
  2. You can add folders to organize items in the Project Explorer. For instance, you could group coverages according to which simulation you intend on using them for. Or maybe you have already imported a couple of rasters that you only need for one element of your project. You could put them together in a folder and collapse the folder in the Project Explorer. This will keep them out of sight while you don’t need them and could help you find them faster once you do need them. Note that solution data is automatically organized in folders in coordination with each simulation in the project.
  3. You can add notes to most elements of your project. To add a note, use the Properties… right-click command on an item in the Project Explorer and go to the Notes tab. There, you can leave notes for your colleagues (or yourself) about the item’s intended use or provide additional information that is not readily apparent. This is particularly helpful with simulations when you can add a note giving a summary of the key features of that simulation. Notes could also be used to indicate datasets you compared to get a new dataset. These can help everyone keep track of what function each thing serves in a given project.
  4. As you go through the project, it is recommended to delete what you’re not using. Not only does this organize the Project Explorer, it also frees up space in SMS. This can help you avoid slow processing time that can come from too many simulations. In general, we recommend you not have more than seven simulations in a project. It is also recommended to remove large rasters, shapefiles, or images after you are done using them. If you want to keep certain elements that you’re not using right now, you may want to minimize them or put them in a folder when not in use.

Using these tips, you will keep your projects organized and accessible. Make use of the organization tools for the Project Explorer in SMS today!.

Blog tags: 

Using Exchanges with MODFLOW 6

How can you get models to run smoothly together in MODFLOW 6 in situations where boundary conditions don’t adequately describe their relationship to each other? In MODFLOW 6, you have the option of relating models to each other through an exchange instead of just using boundary conditions. This allows the MODFLOW 6 to calculate the flow between each model as if it were part of one large unstructured grid.

Connecting models through exchanges allows for the transfer of information back and forth between two models with distinct purposes and packages. GWF-GWF Exchanges create relationships between the cells of GWF Models by identifying cells where water will be exchanged between. The GWF-GWT exchange creates a relationship where the GWF Model provides the flow data that informs the GWT Model.

Example of the GWF-GWF Exchange Options

But in what situations might you use these exchanges?

In the case of GWF-GWF Exchange, the USGS has identified several situations where this could be desirable:

  • Horizontally adjacent models: It may be necessary to connect models that are in the same area in order to better describe how they relate to each other.
  • Vertically adjacent models: As with the horizontally adjacent models, it may be better to connect models that represent different layers more completely than it is to simply put all the layers on one model. This allows for variation in the fineness of the grids while maintaining communication between them all.
  • Locally refined grids: You might want to refine grids around areas where you want more specific results. Using an exchange, the simulation will calculate them all like they’re part of the same unstructured grid.
  • Periodic boundary conditions: This use aims to show the effects of repeating conditions by coupling cells on opposite sides of the model. Instead of exchanging information between cells of adjacent or circumscribing models, you can exchange information between cells in the same model that are not already adjacent to each other.

As mentioned above, the primary purpose of the GWF-GWT exchange is to provide the flow information from the GWF Model to the GWT Model. Since the GWT Model needs flow data for every cell in the model, this is a convenient way to provide that flow data. (For extended information on inputting data for GWT Models, see USGS documentation).

If you have MODFLOW 6 models that you would like to connect to each other, experiment with exchanges in GMS 10.6 today!

Blog tags: 

Introducing the Toolbox in SMS 13.2

One of the new features added to SMS 13.2 is the Toolbox. The addition of the Toolbox allows multiple tools to be collected into one location. Many of these tools previously existed in other locations in SMS such as the Dataset Toolbox. In addition to these tools new tools have been developed for the Toolbox.

You can access the Toolbox using the Toolbox macro button located on the macro toolbar. Clicking the macro will open the Toolbox dialog containing a list of available tools.

The tools have been organized into folders in the Tools tab. Examples of folders include: Coverages, Datasets, Rasters, and Unstructured Grids.

  • Coverage tools are used to manipulate coverages and feature objects.
  • Datasets tools are many of the tools that have previously existed in the Dataset Toolbox and are used to manipulate datasets.
  • Rasters and Lidar tools are used to adjust and clean up raster and lidar data.
  • Unstructured Grid tools can manipulate and adjust unstructured grids (UGrids).
Example Compare Dataset Tool in the Toolbox for SMS 13.2

In addition, there will be folders for manipulating data related to specific numeric models. For example, there is a folder with tools that work with ADCIRC data.

The Toolbox also contains a History tab. This tab keeps a record of all the tool runs used with your projects. As a result, it allows you to run the same tool again using the same settings. For example, you might use the Compare Dataset tool to compare the solution sets from two different simulations, then discover that there was an issue in one of the simulations. After you fixed the simulation and ran it again, you could use the history feature of the toolbox to run the Compare Dataset tool using the same settings as before.

The History tab also shows if a tool executed successfully or not. Furthermore, it lets you make notes on the different tool runs, allowing you to clarify why a tool run failed or what you were hoping to accomplish with a particular tool. This can facilitate collaborating with colleagues when working on the same project.

Additional tools will be added to the Toolbox in future versions of SMS. Try out the Toolbox in SMS 13.2 beta today!

Blog tags: