Aquaveo & Water Resources Engineering News

Aquaveo Visits Namibia

From November 6-9, Aquaveo had the privilege of traveling to Windhoek, Namibia to conduct a training and provide consulting sponsored by BGR for several employees of MWAF. The Ministry graciously provided space in its building for the training classes. During the training classes, Alan Lemon helped them refine a MODFLOW model of the Ohangwena II aquifer.

Northern Namibia has a long history of droughts, and Namibia is the driest country in sub-Saharan Africa. Surface water is not a reliable source for potable water in the area due to the infrequency of rain storms to replenish the watershed. Because of this, the Namibian government—through its Ministry of Agriculture, Water, and Forestry (MWAF)—partnered in 2012 with the German Federal Institute for Geosciences and Natural Resources (Bundesanstalt für Geowissenschaften und Rohstoffe, or BGR) to research and develop an aquifer discovered near the northern border with Angola.

The Ohangwena II aquifer is found below an area about 75 km by 40 km, and has nearly 20 billion cubic meters of fresh water. This is enough to last for well over 400 years at current usage levels, and some think there may be even more water there. This kind of resource would be invaluable to the Namibian people.

Creating a valid working model of the aquifer will help the government of Namibia and BGR to come up with a solid groundwater management plan. Such a plan will help them better manage this amazing resource so that the people living in northern Namibia will have the water they need while also preventing needless wasting of hundreds of years of water located in the precious aquifer.

During the trip, Alan had the chance to visit the Okaukuejo Waterhole in Etosha National Park, where he saw a number of different animals, including rhinoceroses, crocodiles, and springbok. The watering hole is visited by tens of thousands of animals each year, from small birds and mammals to some of the largest and most dangerous animals in Africa. The national park is near the area covered by the Ohangwena II aquifer.

We want to thank BGR and MAWF for inviting us to their facility, and for the opportunity to work on such an important project. If you are interested in having Aquaveo assist with your projects, check out our consulting services.

Blog tags: 

New Floodway Delineation Tool in SMS 13.0

City planners, developers, and others have a great interest in using available land. Sometimes that land is close to areas that flood, so precautions need to be taken so the build site is not too close to (or directly in) the potential flood area. Failure to properly plan and delineate a floodway can potentially cause millions of dollars in flood damage as well as potential losses in property values. Hurricanes Harvey and Florence, with their extreme rainfall amounts, are prime example of why floodway delineation is so important.

In addition to the guidance provided by the Federal Emergency Management Agency (FEMA), the new Floodway tool in SMS allows the extents of a floodway area to be more clearly defined. This tool allows planners, developers, and others to run multiple simulations to determine the safest places to build as well as the places which may be most impacted during a significant flooding incident.

To use the Floodway tool in SMS, a project must have a either a Cartesian grid, a 2D mesh, or a 2D scatter set that has simulation result datasets for at least water depth and velocity. Two coverages are also required: a 1D hydraulic centerline coverage and a 1D hydraulic cross section coverage.

The way the Floodway tool works is by calculating how far in from both sides of a river or stream that vertical walls can be placed and raise the center of flow by the targeted maximum rise. FEMA suggests this rise should be no more than 1 foot. These calculations use the input provided by the water depth dataset, the velocity dataset, and the two hydraulic coverages to define the floodway extents along the entire length of the study area.

Once these extents are known, the data can be used when making area planning and development decisions at all levels of government and businesses. You can try out this feature in SMS 13.0 beta today.

Blog tags: 

New and Improved Lidar Tools in GMS 10.4

With the release of GMS 10.4 (beta), a set of new and improved tools for importing and handling lidar files is now available. The new tools provide much faster import times, and most processing happens on the fly as the lidar display options are adjusted.

Merging and Display Options

As with previous versions of GMS, either a single or multiple lidar files can be imported. However, the options available for handling the lidar data have changed significantly, offering more precise control and more options that will allow better use of the lidar file data.

One of the best new features is that GMS 10.4 allows merging multiple lidar files into a single file. This is accomplished by selecting the desired lidar files in the Project Explorer, then right-clicking and selecting Merge. Enter the desired filename and allow GMS to process the merge.

After the merging is complete, you can import the new lidar file into your project.The merged file has all of the lidar cloud points that were contained in the original lidar files, though not all of them may be visible. The visibility of lidar cloud points can be adjusted using the display options for the merged lidar file. Access them by right-clicking on the merged lidar file in the Project Explorer and selecting Display Options… to bring up the Display Options dialog.

]

This dialog allows you to change point size, how many are displayed, which kinds are displayed, which points to exclude, and how to exclude them. This allows you to choose the level of complexity without overwhelming you with too many options. The following image shows the merged lidar file with 5 million points displayed.

Interpolation Options

  • UGrid: If your project has an existing unstructured grid (or one that has been imported or created), you can interpolate the lidar files to that UGrid. Simply select the desired lidar files in the Project Explorer, then right-click on them and select Interpolate to UGrid… to bring up the Interpolate Lidar to UGrid dialog. This allows you to select the target UGrid, set the new dataset name, and set the sampling distance.
  • Raster: This option uses the lidar display options set at the time of interpolation and creates a raster file. The Interpolate Lidar to Raster dialog allows the number of X and Y cells to be set, and changing those affects the cell size. The merged raster is then imported into the Project Explorer.

Try these new features today in GMS 10.4 (beta).

Blog tags: 

Quickly Delineating a Floodplain

How many watershed projects require knowing which areas are in a floodplain? There is a lot of debate over building on floodplains, but before that debate can happen, the location of the floodplain needs to be known.

A new feature in WMS makes this process quick and simple.

The Map Flood tool utilizes ground elevations and existing flood hazard maps from the Federal Emergency Management Agency (FEMA) to quickly visualize the impacts of possible modifications in the flood level. The tool is designed to utilize data from web services including ground elevations, flood hazard base flood elevations, and flood hazard floodplain extents.

The Map Flood tool is accessed by clicking on the Map Flood icon in the toolbar.

Running the tool will do the following:

  • Download elevation data for the area which is stored as a scatter set
  • Download base flood elevation lines for the area which is stored as a map coverage
  • Download a flood extents polygon which is stored as a map coverage
  • Download a flood insurance map as a image in the GIS module
  • Create a water surface elevation for the base flood
  • Create an offset water surface elevation for the modified flood level
  • Compute a new flood extent polygon for modified flood level

For locations that do not have FEMA data, you can use your own data to generate flood extents. As long as a ground elevation dataset and a water surface elevation have been imported into a WMS project, then the Map Flood tool can be used to create a fast floodplain. This data needs to be imported into WMS as either a 2D scatter set or a TIN.

Using the new Map Flood tool can greatly reduce the time it takes to delineate a floodplain. Try out the new Map Flood tool in WMS 11.0 today!

Blog tags: 

What We Learned at the 2018 Aquaveo User Conference

Aquaveo held its first annual User Conference from October 16-17, 2018! It was amazing to get to meet so many of our users at once. We hope everyone had a great time.

For us, it was exciting to meet users from all over the world. We met users from the United States, Canada, Portugal, Germany, the United Arab Emirates, Guyana, and Thailand. When asked why they came, the attendees said they came to learn:

  • How Aquaveo’s products can help with their projects
  • More of what Aquaveo has to offer
  • What Aquaveo is all about

In listening to what our users had to share with us, we took away a couple key items that you want to see improved in our software.

  1. You want modeling to go faster. We understand the demand to give results in less time is growing, so we will be looking at ways to make the process of modeling take less time and still be accurate. Some of the innovations added into Aquaveo’s software already significantly reduce the time it takes to complete a model. We hope to add more automation and tools to speed up modeling times.
  2. You need to be able to work with big data. More data is becoming available and you want to be able to use it. This means processing large files covering larger areas in more detail. At Aquaveo, we are working on doing this, including optimizing our code and adding new tools to work with large files such as lidar files.

We’d like to thank the following for participating in our user conference:

If you couldn’t make it to the Aquaveo User Conference this year, we will be having another one next year. Watch our website and Facebook page for future details. See you next year!

5 New Features in SMS 13.0 Beta

We’re happy to announce the beta version of SMS 13.0 is now available. Our developers have been working hard to improve SMS to make the user experience more enjoyable.

To help you learn about some of the new features, we’ve compiled this list of three new features in SMS 13.0 Beta.

  1. Notes can now be added to Properties dialog. Right-clicking on most items in the Project Explorer now have a Properties command that will bring up a dialog with a Notes tab. We have found many uses for this, including making notes about the differences between different map coverages or scatter sets.
  2. New tools to support the use of lidar data. You might have used lidar files in the past and noticed that the interface was a little confusing and sometimes slow. After examining how the process could be improved, we made improvements to the import process and changed how SMS interacts with lidar data. We hope you find our new lidar functionality is both faster and makes working with lidar data easier.
  3. A bridge scour coverage has been added. This allows exporting bridge scour values to the Hydraulic Toolbox to use in analyzing a bridge site. This tool requires having a 2D mesh with elevation data, a water surface elevation, a water depth, and velocity datasets. Most of the values needed will be automatically generated, making bridge scouring faster and easier.
  4. Floodplain delineation has been improved using the Map Flood tool. This tool allows accessing FEMA data to automatically designate flood areas in your project. The tool can also work with local data provided as a scatter set.
  5. A 2D scatter set can now be converted into a raster file. Right-clicking on scatter set item in the Project Explorer now has a new Raster -> Scatter command. Creating a raster from your scatter data can help facilitate sharing data across different applications.

These are only some of the many new and updated features in SMS 13.0 Beta. You can find a bigger list of them here. Along with these new features, we are also excited to offer new tutorials instructing users on how to best utilize the new features. Try out the beta by downloading it today!

Blog tags: 

Performing a Silent Install of XMS

Are you an IT administrator needing to perform a silent install of GMS, SMS, or WMS in a classroom or office? Some classrooms and offices have multiple students or employees changing machines regularly. Non-administrator users are often unable to change the licensing password, lock, or server when these license settings are stored in the global area of the registry. Because of this, we changed the license settings so they are now stored in the user area of the registry. This means that each user account requires this to be setup.

This silent install (or quiet install) workaround requires each user to have the rights to modify the registry. If registry access is restricted, a network administrator can do this by opening the Group Policy Management Editor and creating a startup script that automatically runs the batch file whenever the computer is restarted.

Note: Editing the Registry in Windows is a very advanced administration step. Please always create a backup of the Registry before making changes.

It can be a burden have to manually update the network lock server address in HKEY_CURRENT_USER for each user on each computer. The silent install process is simplified by creating a Windows Registry file that contains the license information and a batch file that can be executed to insert the registry information and launch WMS. The batch file automatically updates the registry for the user and then opens the WMS application. This is the safest way to edit the registry key, as well. The batch file can then be placed on each computer that needs to be updated, and the individual users can execute it as needed.

This workaround uses WMS as an example. This information also applies to GMS and SMS. You can see an example of a registry file in step 1 and the batch file in step 2, below.

  1. Create a file, “Netenble.001.reg”, as follows, replacing "license" with the name or IP address of the network lock server. For example, if the network lock server was at 127.0.0.27, you would use “127.0.0.27”:
    Windows Registry Editor Version 5.00M
    [HKEY_CURRENT_USER\Software\EMRL\WMS]
    "Netenble.001"="license"

    Note: This information was created using Windows 7. Because different Windows versions can have different REG file formats, we recommend you install WMS on one machine, register it to the correct network lock server, then export the [HKEY_CURRENT_USER\Software\EMRL\WMS] registry key. Open the registry file in the text editor and remove every line except those similar to those shown in the image above, and save the file as “Netenble.001.reg”.
  2. Create a file, “wms11.bat”, that will update the registry and start WMS: reg import Netenble.001.reg
    wms.exe
  3. Place these two files in the WMS folder in the image that will be distributed to the affected computers. For example, for the 64-bit version of WMS 11.0, the default location for the folder is “C:\Program Files\WMS 11.0 64-bit\”.
  4. Create a desktop shortcut to the batch file for the convenience of the user. If doing this via a startup script in the Group Policy Management Editor, this step can be skipped.

This silent install workaround can save you significant time as a network administrator. Try it out today!

GMS Training in Hannover, Germany

The German Federal Institute for Geosciences and Natural Resources (Bundesanstalt für Geowissenschaften und Rohstoffe, or BGR) hosted a GMS training class in Hannover, Germany from July 31 to August 3, 2018. It was taught by Todd Wood, an Aquaveo consultant, and attended by employees of BGR and the Jordanian Ministry of Water and Irrigation (MWI).

The first day of the four-day training included instruction on the basics of using GMS, including conceptual model development, defining boundary conditions, and the differences between 2D and 3D modeling. Discussion of MODFLOW and its many packages took up the majority of the first day.

The second day’s training focused on working with regional MODFLOW models (including base maps, conceptual models, and conductance), 2D geostatistics with MODFLOW layer elevations, and interpolation methods. The third day of training covered characterization using borehole data, user-defined cross-sections and horizons, as well as an introduction to model calibration.

The final day of training included automated calibration tools in GMS, including the use of PEST and transient modeling. The day ended with an open lab where participants could work on their own projects with Todd being available to answer questions and help.

We appreciate Falk Lindenmaier and Mark Gropius for arranging the training session for BGR and MWI, and thank you to all of those who attended the training. We love meeting new people and helping them to use GMS more effectively!

While in Hannover, Todd was able to see some of the sights with those attending the training. They visited the municipal forest known as Eilenriede, the Herrenhausen Gardens, Georgengarten, the Maschsee (an artificial lake), and the New Town Hall. Hannover has some truly beautiful locations.

To arrange your own GMS training session, please see the Aquaveo website.

Blog tags: 

4 New Features in the GMS 10.4 Beta

We’re happy to announce the beta version of GMS 10.4 is now available. Our developers have been working hard to improve GMS to make the user experience more enjoyable.

To help you learn about some of the new features, we’ve compiled this list of four new features in GMS 10.4 Beta.

  1. New tools to support the use of lidar data. You might have used lidar files in the past and noticed that the interface was a little confusing and sometimes slow. After examining how the process could be improved, we made improvements to the import process and changed how GMS interacts with lidar data. We hope you find our new lidar functionality is both faster and makes working with lidar data easier.
  2. MODFLOW-USG Transport can now be used with GMS. This version of MODFLOW allows including transport modeling into your projects. With it comes the Block Centered Transport (BCT) process, Dual Porosity Transport (DPT) package, and Prescribed Concentration Boundary (PCB) package. Other options are also included in the MODFLOW-USG Transport model to give a wide range of access.
  3. Head observations for Connected Linear Network (CLN) wells can now be created to measure the computed head in a CLN node or cell. The process is similar to creating head observations in the groundwater domain with some differences. Overall, CLN observations are simple to create and provide a great addition to the CLN process.
  4. You can now export your MODFLOW project for use with MODFLOW 6. This is done similar to saving native text files.

These are only some of the many new and updated features in GMS 10.4 Beta. You can find a bigger list of them here. Along with these new features, we are also excited to offer new tutorials instructing users on how to best utilize the new features. There are specifically tutorials on the new features listed above. Try out the beta by downloading it today!

Blog tags: 

How and When to Use Depression Points in WMS

Have you ever wondered what depression points are used for? Should you be including them in your watershed delineation? Depression points can greatly help to improve the accuracy of your model when used correctly.

A depression point is significantly lower than its surrounding elevation, causing a change in flow accumulation and direction. An example of a depression area would be a watershed that contains a mine. TOPAZ is a public domain program that is used in computing flow directions and accumulations for use in basin delineation with DEMs. TOPAZ assumes that all depression points it encounters in its calculations are due to a lack of resolution, and therefore “fills” the depression point in increments until a flow path can be established straight across the low point. In order to view how a natural depression point would affect flow direction and accumulation, it is necessary to define the specified areas as depression points. This causes TOPAZ to read the cell as a NODATA cell, making TOPAZ think it is a DEM boundary instead of raising the elevation in the depression. Comparing a before and after of marking a depression point shows how the flow path is affected by depression points as displayed below.

It is appropriate to use a depression point where a natural depression occurs in the horizon. Typically you would only define depression points for larger areas where the flow path will be significantly affected by the area. It is not always necessary to define a depression point however. You want to use it when you receive straight lines for delineation boundaries for instance. This would most likely be caused by undefined depression points.

Some errors can occur however when defining depression points incorrectly.

  • Sometimes users will mark the bottom elevation that is actually up higher to the side of the depression point and is not exactly the center deepest point. This issue can be avoided by using the Set contour min/max tool in the Terrain Module to correctly identify the absolute bottom elevation. This DEM point is the one which should be marked as a depression point.
  • Another incorrect use of depression points would be to use them to outline where a stream bed is. A stream bed can be identified by using stream arcs in WMS.

Now that we’ve established when and when not to use depression points, you might be wondering how to create depression points in WMS. To create depression points in WMS:

  1. Turn on the Terrain Data Module.
  2. Use the Select DEM points tool to select the cell containing the lowest DEM elevation. If working with an area that has a large natural depression, simply hold down the Shift key to select all of the cells with low elevation at once.
  3. Select DEM | Point Attributes to bring up the DEM Point Attributes dialog.
  4. Turn on Depression point to mark the cell as a depression point.

Now that the depression points are set, you can run TOPAZ to view the new flow paths. TOPAZ will recognize the new depression, and the detention basin calculator can be used to create a stage-storage curve.

Try adding depression points in your WMS model today!

Blog tags: 

Pages