Aquaveo & Water Resources Engineering News

Troubleshooting an SRH-2D Model

Do you have an SRH-2D model that is failing to converge or has other errors? It is important to understand that errors in SRH-2D model runs are not uncommon and not necessarily an indication of a major problem. This post will give you some guidance so you can quickly identify and fix errors. This will allow you to produce accurate and useful results.

Common errors often appear around items that were missed during the model development. To avoid errors, it is important to review all data that’s been important into SMS. Also, care should be taken in designing and generating the mesh or grid being used in the simulation. While SRH-2D is rather forgiving, sometimes small issues in the mesh or grid can cause errors. Finally, double-check all boundary conditions that they are in the correct location and that all model parameters have been set.

It's important to note that while the SMS model checker can identify some errors, it does not validate the data and cannot catch all errors. Therefore, it is important to be familiar with the SRH-2D error codes and how to troubleshoot them.

Example of error found in an SRH-2D project

When encountering an error, it is important to remain calm and follow the steps outlined in the blog post, recording the error number and referring to the SRH-2D error page for guidance. Often, solutions involve minor adjustments to data inputs or boundary conditions.

If you were unable to record the error from the model wrapper, don't worry. You can still see this information by reviewing two of the files generated by SRH-2D during every model run. These files will be named [projectname].OUT.dat and [projectname].DIA.dat files.

To use these files:

  1. Locate the files in the model run directory with your project file.
  2. Open the *.OUT.dat or *.DIA.dat files using a text editor such as Notepad.
  3. Look through the text file to locate the error code.
  4. Go to the SRH-2D error page to find the solution.
  5. Make the needed change(s) to your project and run SRH-2D again.

By mastering the process of troubleshooting SRH-2D errors, you can produce accurate and useful results that can inform important decisions related to water resources and hydraulic engineering. The Community Edition of SMS is a great resource for exploring the capabilities of SRH-2D in SMS. Use SRH-2D with SMS today!

A previous version of this article was publish in 2018

Blog tags: 

Fixing Negative Water Depth

If you've worked with an SRH-2D model in the Surface-water Modeling System (SMS), you may have noticed that there will be times that some nodes appear to have a negative water depth. This can be problematic because it often doesn't reflect the true nature of the body of water. SRH-2D simulations default their calculations to be cell-centered, while meshes calculate data from the nodes. Inactive cells are set to have a null value of -999, but if you're working with meshes, the nodes that touch the inactive cells will interpolate with the value of -999, thus causing a negative water depth to generate on that node. If this is something you want to avoid, here are some ways to eliminate a negative water depth.

Example of negative depths in an SRH-2D project

The first way to eliminate these negative water depth values from your SRH model when working with a mesh is to run your simulation as normal, and then use the Data Calculator in the Data Set Toolbox to truncate the data to a more desirable number, often this number will be zero. Follow these steps to truncate the data:

  1. Open the Data Set Toolbox under the Data menu.
  2. Under the Math section, select the Data Calculator.
  3. Find the dataset you are wanting to truncate, which will be labeled with "d#".
  4. Enter the following formula into the Calculator: "trunc(x,a,b)" where x is the dataset to be truncated, and where all the data will be greater than or equal to a, and less than or equal to b.
  5. Change the Output dataset name to one that suits your project.
  6. Click Compute, then close the Data Set Toolbox.

Make the new truncated dataset active in the Project Explorer, and note that the new minimum water depth is zero.

Example of truncated values in an SRH-2D project

Another way to get rid of negative water depths is to use an unstructured grid (UGrid). Ugrids use the same cell centered calculations that SRH-2D does, so you won't run into the same issues with how the data is interpolated. If you have already created your simulation on a mesh, you can follow these steps to convert to a UGrid:

  1. In the Project Explorer, right-click the desired mesh and select Convert | Mesh → Ugrid.
  2. If desired, change the Output grid name to something that suits your project.
  3. Remove the mesh from the simulation by right-clicking on the mesh name under the SRH-2D Simulations folder and selecting Remove.
  4. Drag the newly converted UGrid under Sim in the SRH-2D Simulations folder.
  5. Run the simulation again.

SRH has now recalculated the data with the UGrid with only cell-centered interpolation, which should remove any unintended negative water depth calculations.

Go to SMS and try out these ways to eliminate negative water depth today!

Blog tags: 

Creating a Pathline for Every Time Step With MODPATH

Have you ever wanted to be able to visualize the movement of particles along every time step in a MODFLOW simulation using MODPATH? MODPATH is a program in the Ground-water Modeling System (GMS) for tracing particles that is utilized in conjunction with the flow data in a MODFLOW simulation. MODFLOW defaults to showing particle movement one time step at a time, but it is possible to show all time steps at once by making use of the Pathlines → Arcs feature.

Example of pathlines generated by MODPATH

To create the particle pathlines as arcs, you need a complete MODFLOW and MODPATH simulation. Once you have that, creating arcs to represent every time step is as simple as going to the MODPATH menu and selecting Pathlines → Arcs. This will create new coverages under your Map Data, the number of which will depend on how many Particle Sets exist in the simulation. It may be useful to go to your display settings and make sure that vertices are turned on under Map Data to see the time steps along the pathline arc more clearly. Each segment of the arc represents a single time step, with the subsequent segment starting where the previous ended.

By right-clicking on one of the particle sets, you can select View Pathline Report, which will show the same data from the arcs on a table. By doing this, you can view the exact values for each point and vertex along the pathline arc. You can also export this data as a text file, which can be opened in Excel in order to view the data outside of GMS. Additionally, you can view the data in several different types of plots by using the Plot Wizard under the Display menu.

You can also export the data from each particle set as a shapefile, making it simple to import the pathline arc data into a different project or program. To do this, all you need to do is right-click on the particle set, export the data, and save it as a Pathline Point Shapefile (*shp).

Head over to GMS and try out the different ways to visualize particle data with MODPATH and MODFLOW today!

Blog tags: 

Filling Missing Raster Data

Do you have a raster that has holes in it? The Fill Nodata can fix small holes in raster data. Available in GMS, SMS, and WMS. In this article, we will explore the ways that the Fill Nodata tool can be used in WMS.

The Fill Nodata tool fills in small areas or gaps in a raster where no elevation data exists. It is located in the Rasters/Fill Nodata section of the Toolbox. The tool will interpolate an elevation to raster cells that are classified as "NODATA". Then the tool will create a new raster in the project that has the fillable no data areas filled.

Example of the File Nodata tool

These holes in the raster can occur for a number of reasons, one of the most common being that the data is incomplete. WMS is flexible enough that it can use a raster with small amounts of missing data for most simulations. However, it is recommended that you have data that is as complete as possible to ensure the generated model is as accurate. Therefore using the Fill Nodata tool can help ensure the accuracy of your model.

The Fill Nodata tool has a few input parameters to keep in mind. The input raster is the most important parameter. This needs to be a raster that has been imported into the project. The maximum distance to interpolate determines how far out WMS will look to fill data. It will use pixel units to do this. The number of 3x3 average filter smoothing iterations to run determines how many smoothing interactions will be run after the interpolation has been calculated. Additional interactions can help in improving the fill data.

Keep in mind that the tool was not intended to create data for large regions of missing data cells, especially regions on the border of the raster. If you have a large area of missing data, it would be best to use other processes to fill in the missing data, such as downloading the missing data and merging it with your raster.

The Fill Nodata tool is one of thetools provided in WMS to let you modify and edit raster data. Try out the Fill Nodata tool in WMS today!

Blog tags: 

Converting a 2D Mesh to a CAD Surface

Using CAD files can be a useful way to transfer project data between different modeling software that may not support all of the same file types. The Surface-water Modeling System (SMS) supports the conversion of terrain in the form of scatter surfaces and mesh surfaces to and from CAD data for easy transfer between systems that utilize CAD data.

To save a terrain from SMS as a CAD surface file:

  1. Deselect everything in the Project Explorer that doesn't contain the terrain data you want to work with. Depending on the amount of data currently in the Project Explorer, the simplest way to achieve this may be to right-click on an empty section of the Project Explorer and select "Uncheck All".
  2. Reselect the terrain data in the Project Explorer.
  3. Right-click in any empty space in the Project Explorer and select "Save as CAD". A save window will pop up and you'll be able to name the CAD surface file and choose where it will save outside of SMS.

The CAD surface data will then also appear in the Project Explorer. Once you assign a name to the file, you should be able to import it into your CAD software and make modifications. This file set will contain all the necessary surface data, including elevation, node, and element information.

Using CAD Faces to 2D Scatter Triangles

When importing CAD surface data into SMS, you'll need to convert it into a form that SMS can recognize so you can make changes and use the information stored in the file. To convert the data back into a form you can use within SMS, you just need to right-click on the CAD data under the CAD Data file folder in the project explorer. Then, select the "Convert → CAD Faces → 2D Scatter Triangles" command.

Head over to SMS and see how using CAD data can benefit your project today!

Blog tags: 

Converting a 3D UGrid in GMS

Have you ever had an unstructured grid (UGrid) or mesh in your project in the Groundwater Modeling System (GMS) that you want to convert to another geometry? While there isn't a specific tool for converting UGrids in GMS, it can still be achieved by following a few simple steps. Typically a UGrid will need to be converted to a scatter set and from there the scatter set can be converted to other geometries. Converting UGrids or mesh into scatter points can be a good way to compare data between models, especially if one of the models is older and doesn't, or can't, include a UGrid or mesh. If this is something that interests you, this article will explain how to get from a UGrid or mesh to either 2D or 3D scatter points.

Example of converting a scatter set

First, go to the Display menu above the macros in the GMS window. Then choose Convert to CAD. Note: CAD data. is generated from whatever is currently visible in the Graphics window, so make sure that everything you need is displayed before you continue. The new CAD data will appear in the project window as a (*.dwg) file. Now right-click on the CAD data and convert CAD Points to TIN Points. A dialog window will appear asking you to designate which layers of the data you want to include in the conversion and to name the new TIN. You can customize this in whichever way best suits your needs.

This new TIN data can be converted directly into a scatter set. Right-click on the TIN and convert it into a 2D scatter set. 3D scatter sets can be made by simply executing a conversion one more time with the 2D scatter set.

If ultimately you want to compare scatter data with another model, it may be helpful to be able to view both sets of data in the same window. You can easily export the scatter set from GMS by right-clicking on the scatter set in the project window and selecting Export, then open the newly exported file in the GMS window with your other project. The scatter set can also be used to create a boundary for a 2D or 3D Cartesian grid which could be used with an older version of MODFLOW.

Head over to GMS and try converting UGrids into scatter sets today!

Blog tags: 

Working with ADCIRC Levees in SMS

As a oceanic modeler working with hydrodynamic modeling, you may have an ADCIRC levee structure in your project that you need to check or fix. Fortunately, SMS provides a couple of tools that can assist you with this task. These tools are part of the SMS Toolbox and allow you to test and verify that levees are working properly. In this article, we'll take a closer look at these tools and how they can be used to enhance your surface-water projects.

To access the ADCIRC levee tools, you can open the Toolbox and expand the ADCIRC folder. The first tool available is called Fix Levee Crest Elevations. This tool checks the ADCIRC boundary conditions coverage that contains the levee arcs. It compares the Z crest attributes against a set of elevation lines, which are known as check lines. The tool will perform a check on any selected levee arc or all levee arcs if none of them have been selected previously. If the elevation values are outside of the check lines, the tool will adjust them to fix the values.

Another tool in the toolbox is the Check/Fix Levee Ground Elevations. This tool checks the elevations of an ADCIRC domain based on the crest elevations defined in an ADCIRC boundary conditions coverage. If necessary, the tool will lower the elevations of a domain based on the elevations defined in the boundary condition coverage. This tool also creates a new dataset that can be mapped as an elevation for the 2D mesh if desired.

Example of the Check/Fix Levee Ground Elevations tool

Both of these tools check the validity of the levee. If the levee does not line up with a hole in the mesh, the tool will determine it to be invalid. If the tool determines the levee to be valid, it will run, and the output datasets will be loaded onto the input domain mesh in SMS.

The ADCIRC levee tools are just some of the tools available in the SMS Toolbox. Additional tools will be added in the future to enhance the capabilities of the toolbox. By using the Toolbox for your surface-water projects in SMS, you can easily test and verify the effectiveness of levees and ensure that they are functioning as they should be.

In conclusion, if you need to check or fix an ADCIRC levee structure in your project, SMS provides helpful tools in its toolbox to assist you. These tools, such as Fix Levee Crest Elevations and Check/Fix Levee Ground Elevations, allow you to test and verify the effectiveness of levees, ensuring that they function correctly. So, try out the SMS toolbox today for your surface-water projects, and make your work easier!

Blog tags: 

How to Include Sediment Transport in CMS-Flow

As a civil engineer working with hydrodynamic modeling, you understand the importance of considering sediment transport in many models, such as CMS-Flow. The sediment transport equation is essential as it models the rate of sediment particle movement based on various factors, including local flow conditions and sediment properties. With the sediment transport module in CMS-Flow, you can achieve a more accurate representation of river or coastal systems. It also enables you to explore different scenarios such as changes in flow conditions, sediment input, or sea level rise.

Using the Surface-water Modeling System (SMS), the base of a CMS-Flow model is created on an unstructured grid (UGrid), with components such as save points, activity classification coverage, and boundary conditions. Save points are vital for identifying high temporal resolution output locations. Activity classification coverages exclude geographic regions from the simulation computations. A boundary conditions coverage is a required component for any simulation.

Example of Sediment Transport options for CMS-Flow

Once you have created these components, you can create a new CMS-Flow simulation by right-clicking in the Project Explorer. Next, apply the UGrid and any coverages you want to include in the simulation by dragging them under the simulation. You can then set the parameters for sediment transport by following these steps:

  1. Right-click on the simulation and select Model Control to open the CMS-Flow Model Control dialog.
  2. Select the Sediment Transport tab and check the box next to Calculate sediment transport.
  3. Under the Sediment Transport tab, input various parameters to refine sediment transport in the simulation. These include sediment density and porosity, bed composition, transport formula, and more.
  4. Set all other desired parameters in the tabs of the CMS-Flow Model Control dialog and click OK when finished.

Once you have set all the necessary parameters, you are ready to run the CMS-Flow simulation with its included sediment transport calculations. By utilizing sediment transport, you can refine your CMS-Flow model further and achieve more accurate results.

In conclusion, sediment transport is an essential process that needs to be considered in hydrodynamic models like CMS-Flow. With the sediment transport module in CMS-Flow, you can achieve a more realistic representation of river or coastal systems and explore various scenarios. Follow the steps outlined above to set the sediment transport parameters and refine your CMS-Flow model in SMS today.

Blog tags: 

Exploring the MODFLOW HUF Package

Are you looking to control flow between grid cells in your MODFLOW project using the Ground-water Modeling System (GMS)? MODFLOW offers a couple packages for doing this, but consider using the Hydrogeologic-Unit Flow (HUF) package. This package gives you greater control over the properties of cells regulating flow in a MODFLOW model and help represent more complex stratigraphy in your project.

The HUF package is located in the MODFLOW Global options, and can be used in conjunction with other packages. The HUF package is one of the flow packages, of which you can only have one flow package selected for a project. Once the HUF package has been added to the project, it can be accessed through the MODFLOW menu.

Example of HUF package materials

The benefit of using the HUF package in your MODFLOW model is that the materials are not bound to the grid, making it possible for there to be more than one material mapped to a single cell. The hydrogeologic units are calculated independent of the cell boundaries, so by using the HUF package the model can more accurately represent the relationship between materials.

View the hydrogeologic units by going to the display options and clicking on the MODFLOW tab under 3D Grid Data, then turn on Hydrogeologic units. Back in the Graphics Window, when in ortho mode, you can view the model from the top, front, or side.

By accessing the HUF package under the MODFLOW menu, you can select the Edit Materials button to view or change the conductivity level of each material. In the HUF package dialog, you can also edit the top values or thickness values in the array manually, and designate whether to use vertical hydraulic conductivity (VK) or vertical anisotropy (VANI). You can also define each layer as confined or convertible, assign a head to dry cells, adjust grid elevations, and more. The HUF arrays can also be exported to grid datasets, which makes them viewable as contours or in a table.

Incorporating the HUF package into GMS also expands how the package can be used. For example, GMS has the ability to use TPROGS to generate HUF data.

Go to GMS and see how the HUF package can be used in your MODFLOW model today!

Blog tags: 

Using CAD Data to Delineate a Watershed

Did you know that you can use CAD files to delineate your watershed area in a Watershed Modeling System (WMS) project? WMS is capable of using CAD data for elevation data, designs, layouts, and more. CAD data can be converted to TINs and feature objects to be implemented in a WMS project.

When converting the CAD data to feature objects, you can choose which layers from the data you would like to use when creating the new feature object. After that, you can clean up the feature object and choose all the properties for the coverage. To convert CAD data into feature objects, do the following:

  1. Import the CAD data into WMS from a DWG, DXF, or DGN file.
  2. After importing the CAD data, review the data to verify that it was imported correctly and that it has the correct projection.
  3. Right-click on the file in the Project Explorer and select Convert | Feature Objects….
  4. In the Cad → Feature Objects dialog, select which layers to convert into feature objects.
  5. Make certain the new coverage is set to have the "drainage" type.
  6. Designate the converted feature objects as outlet points and streams. Also verify that any stream arcs a set with the correct direction.

With the CAD data converted to feature objects and you've designated your outlets and streams, you can start the process of delineating your watershed. To do this, you will need a DEM in your project. If you have elevation data stored in a CAD file, you will first need to convert the CAD data to a TIN.

Basin delineated from CAD data

CAD data can be converted into TIN points or TIN triangles, but the best way to end up with TIN triangles is to convert into TIN points first. To convert CAD data directly into TINs, do the following:

  1. Import the CAD data into WMS in the form of a DWG, DXF, or DGN file.
  2. Right-click on the file in the Project Explorer and select Convert | CAD Points → TIN Points.
  3. In the Cad → TIN dialog, select which layers to convert and the name the TIN data will appear under in the Project Explorer.
  4. Right-click on the TIN point data in the Project Explorer and select Triangles | Triangulate.

From here you can convert the TIN to DEM if necessary. The TIN module in WMS has a few tools for working with basins that may be sufficient for your model. However, some models either perform better or require a DEM. Once you have the DEM you can generate the delineated basin. To do this:

  1. Right-click on the TIN and select Convert | TIN → DEM.
  2. Enter parameters for the DEM in the Convert TIN to DEM dialog.
  3. Review the generated DEM.

Once you have a DEM, complete the following steps:

  1. Select DEM | Compute Flow Direction in the Drainage module.
  2. Select DEM | Polygon Basin IDs →> DEM in the Drainage module.
  3. Select DEM | Compute Basin Data in the Drainage module.

Once you have a delineated basin, you can use the basin with the watershed modeling model of your choice. Be certain to review the basin to make certain it contains all of the area you need for your project.

Head over to WMS and see how you can utilize CAD data to create delineated basins in your projects today!

>
Blog tags: 

Pages