WMS

Using GSSHA Group Files in WMS

GSSHA Group files in WMS allow multiple GSSHA projects to be saved together in one set of files. It can sometimes be helpful for you to run GSSHA on multiple related projects in order to compare the results.

GSSHA

You can open multiple projects into one WMS session by doing the following:

  1. Open the first project using the GSSHA | Open Project File option.
  2. Open the second, third, ect., project using the same menu.

Once the desired projects are open in WMS, you can save them as a GSSHA Group Project (GGP) file. This keeps everything together in one location.

  1. Save the project as a group by using the GSSHA | Save Group option.
  2. Select the projects to include in the group.
  3. Give the group a file name.

GSSHA can be run on a group file if you do the following:

  1. Select the GSSHA | Run GSSHA Group option.
  2. Select the projects to run.
  3. Give the project a name.
  4. Select whether to suppress screen printing and/or to import the solutions when the GSSHA run finishes.

When GSSHA finishes running on the first project, the Model Wrapper dialog will automatically close. A few moments later, another instance of the Model Wrapper dialog will appear as GSSHA runs on the second project. This one will also automatically close. This continues this way through all of your selected projects. WMS will then import the solutions from the GSSHA runs.

All of the tips here require you to be in the 2D Grid Module—there are additional GSSHA menus in other modules. Additionally, warnings may appear asking if land use and soil type tables should be overwritten. This is up to your discretion. Keep in mind, however, that it is generally best to import projects in an additive manner, with the most simple project being imported first and the most complex project being imported last.

Try out saving and running GSSHA groups in WMS today!

Blog tags: 

Converting CAD Data to Feature Objects in WMS

CAD data has been around for a long time and it’s one of the most readily available formats for geological data. WMS can make use of the data in a variety of ways. One of these ways is to convert CAD data into feature objects.

When CAD data for an area is available, DWG and DXF file data can be automatically converted to feature objects in WMS. Lines, points, and polygons in the CAD file can be turned into feature objects on a Map coverage for use in your WMS projects. This is done by doing the following:

  1. Import the CAD data into WMS. It will appear in the Project Explorer.
  2. In the Project Explorer, right-click on the CAD file and select CAD to | Feature Objects.
  3. In the CAD → Feature Objects dialog, select the layers to be converted to feature objects.
  4. Next, in the Clean Options dialog, select options to clean up the feature objects such as removing dangling arcs.
  5. Finally, the Properties dialog will appear letting you designate the type of coverage that will hold the new feature objects.

After you have converted your CAD data to feature objects, there are few items to keep in mind.

  • Typically, CAD data will not designate the stream direction. Make certain to check the direction of arcs generated from CAD data. Use the Reorder Streams command to fix this.
  • Polygons will not be automatically generated from polygons in the CAD data. Any enclosed arcs must be converted to polygons using the Build Polygons command.
  • It may be necessary to use the Clean Options dialog again after conversion.
  • Additional adjustments to the arcs may be necessary using the Map module tools.

Generating feature arcs from CAD data can save you a lot of time and frustration when building your watershed model. Try out converting CAD data into feature objects using WMS today!

Blog tags: 

Working with Rain Gages in GSSHA

Are you needing to add rain gages to your GSSHA model? Using rain gages to define your precipitation in GSSHA is extremely useful due to its ability to spatially model precipitation over a watershed. Combining spatially varying rainfall with the distributed parameters of GSSHA is a great way to create a fairly realistic model for your watershed.

One of the bigger challenges when simulating a storm event is finding reliable data. Although it is important to investigate the most accurate source for your particular watershed, there are websites containing NOAA and GLDAS data for not only the United States, but globally. Having many sources of compiled data all on one site makes Cuahsi’s HydroClient a very useful resource. For those using our software internationally, another possibly useful resource when gathering storm data from the Global Precipitation Climatology Centre. This gives monthly values from 1901-2013, with newer data being added frequently.

Now that you have solid data for your watershed, it is time to define your gages. To use rain gages as your precipitation input:

  1. Create a rain gage coverage.
  2. Create rain gages in their proper locations.
  3. Using the Select tool, double-click on the gage to bring up the Rain Gage Properties dialog.
    1. Set the gage type to GSSHA.
    2. Define the precipitation using either a cumulative or an incremental distribution.
    3. Beneath the Show drop-down, choose GAGES if your data is incremental, and ACCUM if your data is accumulative.
  4. Return to the 2D-Grid module and select GSSHA | Precipitation.
    1. Select Gage as the rainfall event, select Rain Gage, and choose your preferred interpolation method (Inverse distance weighted or Thiessen polygons).

For more information and specifics on working with gages in GSSHA, please take a look at the GSSHA user’s manual. WMS provides a useful and helpful resource when creating a GSSHA model, analyzing and viewing the results. Practice using rain gages as your precipitation source in WMS 11.0 today!

Blog tags: 

How to Calculate Riprap Using the Hydraulic Toolbox

Are you needing to determine the size of stones needed for riprap? Having stones that are too small will reduce the effectiveness of the riprap which could be disastrous. On the other side, having stones that are too large could cause unnecessary expense.

After defining drainage data in WMS, it is possible to calculate the riprap needed for your model using the FHWA Hydraulic Toolbox. To do this:

  1. Define your drainage data in WMS.
  2. Assign each basin attribute to an analysis method by double-clicking on the feature, and then selecting Edit Attributes…. This will give you the opportunity to link your drainage data to the Hydraulic Toolbox.
  3. Click on the Hydraulic Toolbox macro in WMS to bring up the Hydraulic Toolbox.
  4. You can calculate riprap using one of two methods:
    • Channel Lining Design Analysis Tool. Keep in mind when using this tool that a filter material must be separately designed.
    • Riprap Analysis Tool. This tool will calculate the filter material along with riprap size.

Once in the Hydraulic Toolbox, locate the name of the analysis method chosen and double-click to open the analysis dialog for the chosen parameter and method. You will notice that all of the data you input into WMS is now filled in the analysis tool. After you specify blank parameters, the tool will calculate and display the results at the bottom of the screen under “Minimum Riprap Thickness”.

Using the Hydraulic Toolbox to calculate riprap can help your project move forward. The toolbox also contains many other features worth exploring. Try using the Hydraulic Toolbox today!

Blog tags: 

Pages